FINANCIAL SENTIMENT ANALYSIS USING FINBERT FINE-TUNED
Abstract
Financial information is a critical type of data for analysis. However, because much of it is unstructured and widely dispersed, an appropriate analytical method is required, one of which is sentiment analysis. In the financial context, sentiment analysis is employed by the industry to assess public perceptions of companies or market conditions. This study implements a fine-tuned FinBERT model to perform sentiment analysis in the financial sector. The dataset used is a combination of FiQA (Financial Question Answering) and The Financial PhraseBank, consisting of English sentences labeled with negative, neutral, and positive sentiments. The research process involved data preprocessing, tokenization, data splitting, model training, and evaluation using accuracy, precision, recall, F1-score, and confusion matrix metrics. The results show that the model achieved 82% accuracy, with its best performance in the positive class (F1-score 0.88) and the neutral class (F1-score 0.85), but weaker performance in detecting the negative class (F1-score 0.49). These findings indicate that the fine-tuned FinBERT is effective for financial sentiment analysis, particularly for positive and neutral sentiments, though improvements are needed in negative sentiment detection, potentially through expanding training data diversity or applying data augmentation techniques
References
[2] M. N. Brilianto, Y. Susanti, and E. Zukhronah, “Analisis Sentimen terhadap Kalimat Finansial pada FiQA dan The Financial PhraseBank,” PYTHAGORAS J. Pendidik. Mat., vol. 18, no. 1, pp. 48–55, 2023, doi: 10.21831/pythagoras.v18i1.59760.
[3] N. Ima Nafila and S. Sulisetijono, “Melampaui Pembelajaran Konvensional: Mengintegrasikan Canva Dan Pembelajaran Berbasis Game Dalam Lkpd Untuk Motivasi Optimal Dalam Pendidikan Digital,” J. Inov. Teknol. dan Edukasi Tek., vol. 4, no. 1, p. 3, 2024, doi: 10.17977/um068.v4.i1.2024.3.
[4] M. Amien and G. Frendi Gunawan, “BERT dan Bahasa Indonesia: Studi tentang Efektivitas Model NLP Berbasis Transformer,” ELANG J. Interdiscip., vol. 1, pp. 132–140, 2024, doi: 10.32664/elang.v1i02.
[5] N. Anggraini, D. Arman Prasetya, and T. Trimono, “Prediksi Harga Saham Sektor Energi Menggunakan Metode Spatial Temporal Attention-Based Convolutional Network Berdasarkan Data Teks Dan Numerik,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 3872–3880, 2025, doi: 10.36040/jati.v9i3.13443.
[6] A. M. Priyatno and F. I. Firmanand, “Fitur n-gram untuk perbandingan metode machine learning pada sentimen judul berita keuangan,” J. Artif. Intell. Digit. Bus., vol. 1, no. 1, pp. 1–6, 2022, doi: 10.31004/riggs.v1i1.4.
[7] J. S. Hutagalung and Rasiban, “ANALISIS SENTIMEN KEUANGAN (DATA FIQA AND FINANCIAL PHRASEBANK) MENGGUNAKAN ALGORITMA LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 3, pp. 1654–1669, 2023, doi: 10.35870/jimik.v4i3.404.
[8] J. Y. Huang, C. L. Tung, and W. Z. Lin, “Using Social Network Sentiment Analysis and Genetic Algorithm to Improve the Stock Prediction Accuracy of the Deep Learning-Based Approach,” Int. J. Comput. Intell. Syst., vol. 16, no. 1, 2023, doi: 10.1007/s44196-023-00276-9.
[9] L. Nurina, S. H. Hairuddin, A. A. Bakri, and A. Pilua, “Tinjauan Bibliometrik Terhadap Pemanfaatan Big Data, Analisis Sentimen, dan Kriptokurensi dalam Analisis Pajak,” Sanskara Akunt. dan Keuang., vol. 2, no. 01, pp. 66–76, 2023, doi: 10.58812/sak.v2i01.257.
[10] E. A. Marwa and A. B. Kristanto, “Analisis Sentimen Pengungkapan Informasi Manajemen: Text Mining Berbasis Metode VADER,” Own. Ris. J. Akunt., vol. 6, no. 3, pp. 2853–2864, 2022, doi: 10.33395/owner.v6i3.895.
[11] N. P. I. Maharani, A. Purwarianti, Y. Yustiawan, and F. C. Rochim, “Domain-Specific Language Model Post-Training for Indonesian Financial NLP,” in Proceedings of the International Conference on Electrical Engineering and Informatics, Bandung, Indonesia: 2023 International Conference on Electrical Engineering and Informatics (ICEEI), 2023. doi: 10.1109/ICEEI59426.2023.10346625.
[12] B. Nugroho and A. Denih, “Perbandingan Kinerja Metode Pra-Pemrosesan Dalam Pengklasifikasian Otomatis Dokumen Paten,” Komputasi J. Ilm. Ilmu Komput. dan Mat., vol. 17, no. 2, pp. 381–387, 2020, doi: 10.33751/komputasi.v17i2.2148.
[13] M. Saputra and Sri Wahyuni, “Analisis Sentimen Pengguna Pada Aplikasi Bank Digital Krom Dengan Algoritma Support Vector Machine,” INFOTECH J., vol. 10, no. 2, pp. 327–332, 2024, doi: 10.31949/infotech.v10i2.11801.
[14] L. Palupi, E. Ihsanto, and F. Nugroho, “Analisis Validasi dan Evaluasi Model Deteksi Objek Varian Jahe Menggunakan Algoritma Yolov5,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 234–241, 2023, doi: 10.47065/josh.v5i1.4380.
Copyright (c) 2025 TEKNIMEDIA: Teknologi Informasi dan Multimedia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Teknimedia memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Teknimedia dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan.

Jurnal TEKNIMEDIA : Teknologi Informasi dan Multimedia is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional
.png)




