FINANCIAL SENTIMENT ANALYSIS USING FINBERT FINE-TUNED

  • Heroe Santoso Universitas Bumigora
  • Raisul Azhar Universitas Bumigora
  • Suryati Suryati Universitas Bumigora
  • Melati Rosanensi Universitas Bumigora
  • I Made Yadi Dharma Universitas Bumigora
  • Husain Husain Universitas Bumigora
  • Ahmat Adil Universitas Bumigora
  • Muhamad Azwar Universitas Bumigora
  • I Putu Hariyadi Universitas Bumigora
Keywords: Sentiment Analysis, FinBERT Fine-Tuning, Financial Text

Abstract

Financial information is a critical type of data for analysis. However, because much of it is unstructured and widely dispersed, an appropriate analytical method is required, one of which is sentiment analysis. In the financial context, sentiment analysis is employed by the industry to assess public perceptions of companies or market conditions. This study implements a fine-tuned FinBERT model to perform sentiment analysis in the financial sector. The dataset used is a combination of FiQA (Financial Question Answering) and The Financial PhraseBank, consisting of English sentences labeled with negative, neutral, and positive sentiments. The research process involved data preprocessing, tokenization, data splitting, model training, and evaluation using accuracy, precision, recall, F1-score, and confusion matrix metrics. The results show that the model achieved 82% accuracy, with its best performance in the positive class (F1-score 0.88) and the neutral class (F1-score 0.85), but weaker performance in detecting the negative class (F1-score 0.49). These findings indicate that the fine-tuned FinBERT is effective for financial sentiment analysis, particularly for positive and neutral sentiments, though improvements are needed in negative sentiment detection, potentially through expanding training data diversity or applying data augmentation techniques

References

[1] H. I. Naibaho, K. Jeremi, D. Saragih, R. C. Nasution, S. H. Zebua, and A. N. Wulandari, “Use of Indonesian in Financial Reports for Investor Understanding,” As-Salam J. Islam. Soc. Sci. Humanit., vol. 2, no. 4, pp. 95–105, 2024, [Online]. Available: https://ejournal.as-salam.org/index.php/assalam/article/view/74
[2] M. N. Brilianto, Y. Susanti, and E. Zukhronah, “Analisis Sentimen terhadap Kalimat Finansial pada FiQA dan The Financial PhraseBank,” PYTHAGORAS J. Pendidik. Mat., vol. 18, no. 1, pp. 48–55, 2023, doi: 10.21831/pythagoras.v18i1.59760.
[3] N. Ima Nafila and S. Sulisetijono, “Melampaui Pembelajaran Konvensional: Mengintegrasikan Canva Dan Pembelajaran Berbasis Game Dalam Lkpd Untuk Motivasi Optimal Dalam Pendidikan Digital,” J. Inov. Teknol. dan Edukasi Tek., vol. 4, no. 1, p. 3, 2024, doi: 10.17977/um068.v4.i1.2024.3.
[4] M. Amien and G. Frendi Gunawan, “BERT dan Bahasa Indonesia: Studi tentang Efektivitas Model NLP Berbasis Transformer,” ELANG J. Interdiscip., vol. 1, pp. 132–140, 2024, doi: 10.32664/elang.v1i02.
[5] N. Anggraini, D. Arman Prasetya, and T. Trimono, “Prediksi Harga Saham Sektor Energi Menggunakan Metode Spatial Temporal Attention-Based Convolutional Network Berdasarkan Data Teks Dan Numerik,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 3872–3880, 2025, doi: 10.36040/jati.v9i3.13443.
[6] A. M. Priyatno and F. I. Firmanand, “Fitur n-gram untuk perbandingan metode machine learning pada sentimen judul berita keuangan,” J. Artif. Intell. Digit. Bus., vol. 1, no. 1, pp. 1–6, 2022, doi: 10.31004/riggs.v1i1.4.
[7] J. S. Hutagalung and Rasiban, “ANALISIS SENTIMEN KEUANGAN (DATA FIQA AND FINANCIAL PHRASEBANK) MENGGUNAKAN ALGORITMA LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 3, pp. 1654–1669, 2023, doi: 10.35870/jimik.v4i3.404.
[8] J. Y. Huang, C. L. Tung, and W. Z. Lin, “Using Social Network Sentiment Analysis and Genetic Algorithm to Improve the Stock Prediction Accuracy of the Deep Learning-Based Approach,” Int. J. Comput. Intell. Syst., vol. 16, no. 1, 2023, doi: 10.1007/s44196-023-00276-9.
[9] L. Nurina, S. H. Hairuddin, A. A. Bakri, and A. Pilua, “Tinjauan Bibliometrik Terhadap Pemanfaatan Big Data, Analisis Sentimen, dan Kriptokurensi dalam Analisis Pajak,” Sanskara Akunt. dan Keuang., vol. 2, no. 01, pp. 66–76, 2023, doi: 10.58812/sak.v2i01.257.
[10] E. A. Marwa and A. B. Kristanto, “Analisis Sentimen Pengungkapan Informasi Manajemen: Text Mining Berbasis Metode VADER,” Own. Ris. J. Akunt., vol. 6, no. 3, pp. 2853–2864, 2022, doi: 10.33395/owner.v6i3.895.
[11] N. P. I. Maharani, A. Purwarianti, Y. Yustiawan, and F. C. Rochim, “Domain-Specific Language Model Post-Training for Indonesian Financial NLP,” in Proceedings of the International Conference on Electrical Engineering and Informatics, Bandung, Indonesia: 2023 International Conference on Electrical Engineering and Informatics (ICEEI), 2023. doi: 10.1109/ICEEI59426.2023.10346625.
[12] B. Nugroho and A. Denih, “Perbandingan Kinerja Metode Pra-Pemrosesan Dalam Pengklasifikasian Otomatis Dokumen Paten,” Komputasi J. Ilm. Ilmu Komput. dan Mat., vol. 17, no. 2, pp. 381–387, 2020, doi: 10.33751/komputasi.v17i2.2148.
[13] M. Saputra and Sri Wahyuni, “Analisis Sentimen Pengguna Pada Aplikasi Bank Digital Krom Dengan Algoritma Support Vector Machine,” INFOTECH J., vol. 10, no. 2, pp. 327–332, 2024, doi: 10.31949/infotech.v10i2.11801.
[14] L. Palupi, E. Ihsanto, and F. Nugroho, “Analisis Validasi dan Evaluasi Model Deteksi Objek Varian Jahe Menggunakan Algoritma Yolov5,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 234–241, 2023, doi: 10.47065/josh.v5i1.4380.
Published
2025-12-16
How to Cite
Heroe Santoso, Raisul Azhar, Suryati, S., Melati Rosanensi, I Made Yadi Dharma, Husain, H., Ahmat Adil, Muhamad Azwar, & I Putu Hariyadi. (2025). FINANCIAL SENTIMENT ANALYSIS USING FINBERT FINE-TUNED. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 6(2), 232-237. https://doi.org/10.46764/teknimedia.v6i2.316
Abstract viewed = 9 times
PDF downloaded = 3 times